

mguchiQ

Model Building Tutorial 2

Derived Variables, Constants, and MaxT

__

mguchiQ

Contents

• Overview

• Derived Variables

• Constants

• Derived Variables Continued…

• Updated Functions

• MaxT

__

mguchiQ

Overview

The objective of this document is to build on the model we created in the tutorial described in the document

021.mguchiQ – Model Building Tutorial 1 by introducing some more features of mguchiQ.

Specifically we will be introducing Derived Variables, Constants and an intelligent MaxT.

Derived Variables

Derived variables allow us to take computational functionality out of function formula. This is a good idea for

2 reasons:

• It reduces the complexity and aids in the readability of function formula.

• It greatly enhances performance by only evaluating the derived variable once per run rather than

once per product instance of the run.

Derived Instance Variables

A Derived Instance Variable is a variable that is derived, via a formula, from other instance variables.

We are going to create a Derived Instance Variable called CurrentAge that uses the Instance Variables

AgeAtInception and DurationInforce. CurrentAge is defined in the InstanceVariables sheet as below:

Derived Single Variables

Our example model does not require any Derived Single Variables, but these can be specified, via a formula,

in a similar way to how Derived Instance Variables are specified.

__

mguchiQ

Derived Series Variables

A Derived Series Variable is a variable that is derived, via a formula, from other Series Variables.

If we have a look at our Function BEL which is defined as follows:

BEL(t) = IF(t=MaxT, NetCF(t), NetCF(t) + (BEL(t+1) * (1/((1+Yield(t))^(1/12))))

The underlined part of the formula is a conversion of the yield to a discount factor. Note that this part of the

formula does not rely on any Instance Variables and is therefore a candidate for extraction out of the

function formula as a Derived Series Variable.

This is achieved by created a Derived Series Variable called DiscountFactor in the SeriesVariables sheet as

follows:

Referencing other Series Variables must always be done via the INDEX function using the name of the

referenced Series Variable and must not be referenced directly. So, the formula noted above must be

written:

= 1 / POWER(1+INDEX(Yield,A2),1/12)

And not:

= 1 / POWER(1+H2,1/12)

We can then update our BEL formula as follows:

BEL(t) = IF(t=MaxT, NetCF(t), NetCF(t) + (BEL(t+1) * DiscountFactor[t])

Not only does this reduce the complexity of the BEL formula and make it more readable but it will also make

all Runs using this model more efficient. This is because all Derived Variables are only calculated once at the

start of a Run whereas the previous formula would have calculated the portion (1/((1+Yield(t))^(1/12))) for

every product instance of the Run.

__

mguchiQ

All formulae in the derived series range must have a similar formula, the only thing that must change between

formulae on different rows is the reference to column A (the series index), as below:

We will update our SeriesVariable sheet with a few more Derived Series Variables as follows:

InflationFactor = IF(A2=1,1,POWER(1+INDEX(Inflation,A2-1),(A2-1)/12))

EscalatedExpense = Expense*INDEX(InflationFactor,A2)

DiscountFactor = 1 / POWER(1+INDEX(Yield,A2),1/12)

LapseRateFactor = 1-POWER(1-INDEX(LapseRate,A2),1/12)

Note: in the formulae above the only direct reference to a cell is to cells in column A – the index of the series.

All other cell references must be by their name.

__

mguchiQ

Derived Table Variables

A Derived Table Variable is a variable that is derived, via a formula, from other Table Variables.

Firstly we are going to flesh out our Table Variable Qx a bit. Previously we had a 2 column table representing

males and females. We will now have a 4 column table representing a combination of Gender (male / female)

and Smoker status (smoker / non-smoker) as below:

We are now going to jump back to our InstanceVariables sheet and add an extra Instance Variable Smoker:

We are now going to take a slight diversion to introduce Constants…

Constants

Constants are entered in the Constants sheet. Constants provide no other function than making formulae

more readable.

We will create 4 constants as below - simply name each cell to the name of the Constant required:

__

mguchiQ

Getting back to our InstanceVariables sheet, we are going to add another Derived Instance Variable called

QxIndex. QxIndex is going to be our index into the Qx table based on a combination of Gender and Smoker

status. Note the use of the Constants defined above in the formula:

Derives Table Variables continued…

If we have a look at our Function Deaths which is defined as follows:

Deaths(t) = PolicyHoldersInforce(t) * (1-(1-Qx[Age(t),Gender+1])^(1/12))

The underlined part of the formula does not rely on any Instance Variables and is therefore a candidate for

extraction out of the function formula as a Derived Table Variable.

This is achieved by created a Derived Table Variable called QxFactor in the TableVariables sheet as follows:

We can then update our Deaths formula as follows:

Deaths(t) = PolicyHoldersInforce(t) * QxFactor[Age(t),QxIndex]

Again this is more readable and also more efficient.

__

mguchiQ

All formulae in the table range must have a similar formula, the only thing that must change between

formulae on different rows is the reference to column A, the second parameter to the INDEX function (the

table x-index), and the third parameter to the INDEX function (the table y-index) as below:

__

mguchiQ

Updated Functions

Our original set of functions looked as follows:

Function Formula
Age(t) FLOOR(AgeAtInception+((DurationInforce+t)/12))

Deaths(t) PolicyHoldersInforce(t) * (1-(1-Qx[Age(t),Gender+1)^(1/12)))

Lapses(t) (PolicyHoldersInforce(t) - Deaths(t)) * (1-((1-LapseRate[DurationInforce+t])^(1/12)))

PolicyHoldersInforce(t) IF(t=1, 1, PolicyHoldersInforce(t-1) - Deaths(t-1) - Lapses(t-1))

PremiumsReceived(t) PolicyHoldersInforce(t) * Premium

DeathBenefitsPaid(t) Deaths(t) * SumAssured

ExpensesPaid(t) PolicyHoldersInforce(t) * (Expense * IF(t=1,1,(1+Inflation(t-1))^((t-1)/12)))

NetCF(t) PremiumsReceived(t) - ExpensesPaid(t) - DeathBenefitsPaid(t)

BEL(t) IF(t=MaxT, NetCF(t), NetCF(t) + (BEL(t+1) * (1/((1+Yield(t))^(1/12)))

With the Derived Variables we have introduced we can rewrite our functions as follows (changed portions

highlighted in italics):

Function Formula
Age(t) FLOOR(AgeAtInception+((DurationInforce+t)/12))

Deaths(t) PolicyHoldersInforce(t) * QxFactor[Age(t),QxIndex]

Lapses(t) (PolicyHoldersInforce(t) - Deaths(t)) * LapseRateFactor[DurationInforce+t]

PolicyHoldersInforce(t) IF(t=1, 1, PolicyHoldersInforce(t-1) - Deaths(t-1) - Lapses(t-1))

PremiumsReceived(t) PolicyHoldersInforce(t) * Premium

DeathBenefitsPaid(t) Deaths(t) * SumAssured

ExpensesPaid(t) PolicyHoldersInforce(t) * EscalatedExpense[t]

NetCF(t) PremiumsReceived(t) - ExpensesPaid(t) - DeathBenefitsPaid(t)

BEL(t) IF(t=MaxT, NetCF(t), NetCF(t) + (BEL(t+1) * DiscountFactor[t])

This new set of function definitions is easier to understand and will run more efficiently.

__

mguchiQ

MaxT

In the first version of our model we simply specified MaxT as 1,000:

What a MaxT specified in this way will do is run each product instance 1,000 time periods into the future.

This will not be the most efficient way to specify MaxT as it will run, for example, a policy holder who is 20

years old the same number of time periods into the future as a policy holder who is 80 years old.

Instead we are going to specify MaxT via a formula using our CurrentAge Instance Variable we created earlier,

as follow:

A MaxT specified in this way would run all policies up to each policy holder being 101 years of age.

